46 research outputs found

    Genomic sequence and phylogenetic analyses of two novel orthoreovirus strains isolated from Pekin ducks in 2014 in Germany

    Get PDF
    Complete genomic sequences of two orthoreovirus strains, D2533/4/1-10 and D2533/6/1-10, isolated from Pekin ducklings in Germany have been determined. Pairwise sequence comparisons and phylogenetic analyses indicated that strain D2533/4/1-10 might have acquired its genomic segments from three different origins, from classical and novel waterfowl reoviruses, and a yet unknown orthoreovirus strain. D2533/6/1-10 proved to be only distantly related to previously described orthoreoviruses. Reassortment, host species transmission events, and successful adaptation of novel variants may signify a challenge for animal health and maintenance of economic production

    Complete Genome Sequence of a Genotype G23P[37] Pheasant Rotavirus Strain Identified in Hungary

    Get PDF
    We investigated the genomic properties of a rotavirus A strain isolated from diarrheic pheasant poults in Hungary in 2015. Sequence analyses revealed a shared genomic constellation (G23-P[37]-I4-R4-C4-M4-A16-N10-T4-E4-H4) and close relationship (range of nucleotide sequence similarity: VP2, 88%; VP1 and NSP4, 98%) with another pheasant rotavirus strain isolated previously in Germany

    Lineage diversification, homo- and heterologous reassortment and recombination shape the evolution of chicken orthoreoviruses

    Get PDF
    The near complete genome sequences of ten field avian orthoreovirus (ARV) strains collected from young chicken between 2002 and 2011 in Hungary have been determined in order to explore the genetic diversity and evolutionary mechanisms affecting ARVs in this region. Sequence analyses and phylogenetic calculations revealed similar geographic distribution and distinct evolution in case of eight studied strains that were closely related to the recently described Hungarian strain T1781. The remaining two strains showed the highest similarity with the US origin AVS-B. The topology of the phylogenetic trees of certain segments was affected by several potential homologous reassortment events between strains of Hungarian, Chinese and US origin. Analyzing the μB gene a possible heterologous reassortment event was identified in three Hungarian strains. Recombination events were detected in as much as a dozen cases implying that beside point mutations and reassorment this mechanism also plays an important role in the diversification of ARVs. All these mechanisms in concert may explain the reduced effectiveness of immunization using commercial vaccine strains

    Genome sequences of three turkey orthoreovirus strains isolated in Hungary

    Get PDF
    We have investigated the genomic properties of three turkey reovirus strains—19831M09, D1246, and D1104—isolated in Hungary in 2009. Sequence identity values and phylogenetic calculations indicated genetic conservativeness among the studied Hungarian strains and a close relationship with strains isolated in the United States

    Novel adenovirus detected in kowari (Dasyuroides byrnei) with pneumonia

    Get PDF
    A male kowari (Dasyuroides byrnei) originating from a zoo facility was delivered for post mortem evaluation in Hungary. Acute lobar pneumonia with histopathologic changes resembling an adenovirus (AdV) infection was detected by light microscopic examination. The presence of an AdV was confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Although the exact taxonomic position of this novel marsupial origin virus could not be determined, pairwise identity analyses and phylogenetic calculations revealed that it is distantly related to other members in the family Adenoviridae

    Taxonomy of the order Mononegavirales : update 2016

    Get PDF
    In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)

    Taxonomy of the order Mononegavirales: update 2016

    No full text
    In 2016, the order Mononegavirales was emen- ded through the addition of two new families ( Mymon- aviridae and Sunviridae ), the elevation of the paramyxoviral subfamily Pneumovirinae to family status ( Pneumoviridae ), the addition of five free-floating genera ( Anphevirus , Arlivirus , Chengtivirus , Crustavirus , and Wastrivirus ), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)

    Zoonotic transmission of rotavirus: surveillance and control

    No full text
    Group A rotavirus (Rotavirus A, RVA) is the main cause of acute dehydrating diarrhea in humans and numerous animal species. RVA shows vast diversity and a variety of human strains share genetic and antigenic features with animal origin RVA strains. This finding suggests that interspecies transmission is an important mechanism of rotavirus evolution and contributes to the diversity of human RVA strains. RVA is responsible for half a million deaths and several million hospitalizations worldwide. Globally, two rotavirus vaccines are available for routine use in infants. These vaccines show a great efficacy profile and induce protective immunity against various rotavirus strains. However, little is known about the long-term evolution and epidemiology of RVA strains under selective pressure related to vaccine use. Continuous strain surveillance in the post-vaccine licensure era is needed to help better understand mechanisms that may affect vaccine effectiveness
    corecore